Therapeutic Approaches in Glycogen Storage Disease Type II/ Pompe Disease

Benedikt Schoser,* Victoria Hill,† and Nina Raben†

*Friedrich-Baur Institute, Department of Neurology, Ludwig Maximilians University Munich, Munich, Germany D-80336; †The Arthritis and Rheumatism Branch, NIAMS, National Institutes of Health, Bethesda, Maryland 20892

Summary: Glycogen storage disease type II (GSDII)/Pompe disease is an autosomal recessive multi-system disorder due to a deficiency of the glycogen-degrading lysosomal enzyme, acid alpha-glucosidase. Without adequate levels of alpha-glucosidase, there is a progressive accumulation of glycogen inside the lysosome, resulting in lysosomal expansion in many tissues, although the major clinical manifestations are seen in cardiac and skeletal muscle. Pompe disease presents as a continuum of clinical phenotypes. In the most severe cases, disease onset occurs in infancy and death results from cardiac and respiratory failure within the first 1 or 2 years of life. In the milder late-onset forms, cardiac muscle is spared and muscle weakness is the primary symptom. Weakness of respiratory muscles is the major cause of mortality in these cases. Enzyme replacement

therapy (ERT) with alglucosidase alfa (Myozyme; Genzyme Corp., Framingham, MA) is now available for all forms of glycogen storage disease type II. ERT has shown remarkable success in reversing pathology in cardiac muscle and extending life expectancy in infantile patients. However, skeletal muscle has proven to be a more challenging target for ERT. Although ERT is less effective in skeletal muscle than was hoped for, the lessons learned from both clinical and pre-clinical ERT studies have greatly expanded our understanding of the pathogenesis of the disease. A combination of fundamental studies and clinical followup, as well as exploration of other therapies, is necessary to take treatment for glycogen storage disease type II to the next level. **Key Words:** Enzyme replacement therapy, gene therapy, glycogen storage disease type II, Pompe disease, lysosome.

INTRODUCTION

Pompe disease is an autosomal, recessive, multi-system disorder caused by a deficiency of the lysosomal enzyme, acid alpha-glucosidase (GAA), which is the only hydrolase responsible for degrading glycogen to glucose within the acidic milieu of the lysosome. The deficiency of the enzyme results in the accumulation of lysosomal glycogen in multiple tissues, but the clinical manifestations are primarily seen in the cardiac and skeletal muscle. Pompe disease belongs to not only the class of glycogen storage diseases, as it is referred to as glycogen storage disease type II, (GSDII), but also to the group of lysosomal storage disorders. GSD II is a rare disease with an estimated incidence of 1 in 40,000.1 Clinically, GSDII presents as a wide spectrum of phenotypes ranging from the severe rapidly progressive infantile form to the slowly progressive, relatively mild, late-onset form.²⁻⁴ Patients with the most severe infan-

Address correspondence and reprint requests to: Nina Raben, M.D., Ph.D., 50 South Drive, room 1345, NIH, NIAMS, Bethesda, MD 20892-1820. E-mail: rabenn@arb.niams.nih.gov.

tile form rarely survive past the first 2 years of life and die from cardiac failure. Adult patients with the mild form experience progressive skeletal muscle weakness without cardiac involvement and eventually succumb to respiratory failure.

There has been a great deal of progress in the last decades in studying GSDII; the natural history of the disease has been elucidated in prospective and retrospective studies, animal models have been developed, and more than 300 variants have been identified in the GAA gene. The mutations include the entire range of defects (i.e., missense, nonsense, large and small insertions and deletions, and frame-shift mutations). A database containing all the reported mutations and polymorphisms of the GAA gene may be accessed at http://www.pompecenter. nl. There is generally a good correlation between the nature of the mutation, the degree of residual enzyme activity, and the severity of the clinical presentation. Infantile patients have either complete or near-complete enzyme deficiency, while late-onset patients retain some residual enzyme activity. The major advance in the field has been the development and manufacturing of recombinant human acid alpha-glucosidase (rhGAA) for enzyme replacement therapy (ERT). The rhGAA has been produced and purified from Chinese hamster ovary cells (CHO) and, in 2006, human acid α -glucosidase (alglucosidase alfa, Myozyme; Genzyme Corp., Framingham, MA) received broad-label marketing approval in Europe and later in the U.S. This is the first available therapy for GSDII, and it represents the first instance of targeting recombinant enzyme to skeletal muscle. This review summarizes the results of the first clinical trials with ERT and the limitations of replacement therapy. Other potential therapeutic approaches will also be discussed.

PATHOGENESIS

Lysosomal abnormalities

The prevailing view of pathogenesis, which has not changed significantly since the 1980s, is that the glycogen-filled enlarged lysosomes eventually rupture and release toxic contents into the muscle cytoplasm.⁵ A recent study has identified several stages of disease progression in skeletal muscle. At the early stage, muscle cells contain small, glycogen-filled lysosomes. This is followed by enlargement of the lysosomes and leakage of glycogen into the cytoplasm in some areas. As the disease progresses, lysosomal rupturing continues until the majority of glycogen is cytoplasmic, replacing the contractile elements of the cell.⁶ However, this view of pathogenesis may be too simplistic in light of new data concerning additional pathological hallmarks of the disease.

Autophagy

Autophagy, an evolutionarily conserved process that degrades long-lived proteins and damaged organelles, is constitutively active in every cell and is up-regulated under conditions of starvation. Autophagy has been implicated in a number of human diseases, including cancer, neurodegeneration, and lysosomal storage disorders. The failure of productive autophagy in GSDII muscle fibers was first shown in an animal model. In addition to expanded lysosomes, huge areas of cellular debris with a large autophagic component were observed in the core of muscle fibers. The areas of cellular debris, seen in predominantly type IIB myofibers, were associated with resistance to ERT.8 Analysis of isolated single muscle fibers from patients with GSDII confirmed that autophagic build-up is a prominent feature of the disease in humans as well. In patients, as in the mouse model, the enormous build-up appears to cause greater muscle damage than the enlarged, glycogen-filled lysosomes outside the autophagic regions.

Mitochondrial, structural, and neurogenic abnormalities

Mitochondrial alterations, such as mitochondrial swelling and irregularities of cristae structure, as well as the disintegration of muscle structure, including Z-line streaming and thickening, are observed in the majority of muscle biopsies from patients at any age. 6,10 Morphologically scattered or small groups of angular atrophic fibers are frequently seen in Pompe patients, a pattern that suggests neurogenic atrophy. These findings may be related to glycogen storage in anterior horn cells of the spinal cord, which may lead to motor neuron destruction. The accumulation of glycogen in the spinal cord correlates well with spontaneous activity (e.g., positive sharp waves, fibrillation potentials, and so forth) detected in many patients by electromyogram. 10 Because glycogen is not completely cleared in the motor neurons in patients on ERT, a potential consequence of the therapy may be development of motor neuron disease.¹¹

ENZYME REPLACEMENT THERAPY

Background

Like many other lysosomal enzymes, acid alpha-glucosidase is synthesized in the rough endoplasmic reticulum, where high mannose oligosaccharides are added to the molecule. In the Golgi, the oligosaccharide side chains undergo post-translational modifications by the addition of the mannose-6-phosphate (M6P) recognition marker. The addition of a M6P moiety allows for the recognition of the enzyme by mannose 6-phosphate receptors, which transport the enzyme to early and late endosomes. Once inside the late endosomes, the receptor-ligand complexes dissociate due to the low pH in these vesicles, and the enzyme is delivered to the lysosome, whereas the receptors recycle back for the next round of sorting. 12 A portion of the enzyme, which is not bound to the receptors, is secreted, and this extracellular enzyme can be taken up by neighboring cells by cationindependent mannose 6-phosphate receptor (CI-MPR) on the plasma membrane, which directs the endocytosis and transport of the enzyme to the lysosome. In addition to the receptor, numerous proteins are responsible for the delivery of the enzyme to the lysosome. 13 The ability of cells to secrete and uptake lysosomal enzymes was first demonstrated in cross-correction experiments, in which normal cells rescued the phenotype of neighboring cells deficient in a specific lysosomal enzyme.¹⁴ The receptormediated uptake of lysosomal enzymes is the fundamental basis of enzyme replacement therapy for GSDII and many other lysosomal storage diseases. In GSDII, the rhGAA is a 110 kDa precursor containing M6P groups that enable the enzyme to bind the receptor on the cell surface. Once inside the cell, the rhGAA, like the endogenous precursor, is cleaved to yield intermediate forms,

Table 1.	Clinical Trials	of Enzyme	Replacement	Therany	in Infa	antile-onset	Pompe Disease

Authors	Year	Design	Treated Patients	Study Duration	Outcome Measures	Primary Endpoint	Result
Van den Hout, et al. ^{17–19}	2000–2004	Phase I/II	4	>4 years	CF/PF/MF/NF rep. MB	Safety/efficacy	3/4 survived >5.5 years improved CF/PF/MF/NF
Amalfitano, et al. ²⁰	2001	Phase I/II	3	1 year	CF/PFMF/NF rep. MB	Survival	3/3 survived >1 year normal CF and MF
Klinge, et al. 22,23	2005	Phase II	2	1 year	CF/PF/MF/NF rep. MB	Safety/efficacy	Survived >21 months improved CF/PF/MF/ NF
Kishnani, et al. ²¹	2006	Phase II	8	52 weeks	CF/PF/MF/NF	Safety/efficacy	4/8 survived improved CF/PF/MF
Kishnani, et al. ²⁴	2007	Phase II/III	18	52 weeks	CF/PF/MF/NF	Survival/safety/ efficacy	18/18 survived improved CF/MF
In press	2008	Phase II/III	21	>2 years		J	

CF = cardiac function; MB = muscle biopsy; MF = motor function; NF = neurological function; PF = pulmonary function; rep. = repeated; VT = ventilator time.

followed by conversion to the fully mature lysosomal species. 15,16

Clinical trials

Many patients have been receiving rhGAA under different protocols, such as the expanded access protocol for infantile onset Pompe disease, compassionate use, the protocol for severely affected cases with late onset Pompe disease, and so forth. Initial trials focused on the severe infantile form of the disease and were expanded to include patients of all ages. Tables 1 and 2 summarize the completed and ongoing trials and the available results.

Studies in infantile-onset patients. The first studies with ERT in infants were conducted by the Rotterdam group using recombinant human α -glucosidase from transgenic rabbit milk. ^{17–19} Eventually the production of the milk product was discontinued, because the method was not sustainable, and all surviving patients were tran-

sitioned to CHO-derived rhGAA, Myozyme. In these open-label studies, four critically ill infants (aged 2.5 to 8 months, with two who were less than 3 months of age) were enrolled and treated intravenously at an initial dosage of 15 to 20 mg/kg weekly, which was later increased to 40 mg/kg weekly, because the level of enzyme activity in the skeletal muscle still remained significantly below normal on the lower dosage. Increasing the dosage resulted in the normalization of the level of GAA activity; however, muscle glycogen content decreased in only 1 patient who was 3 months of age at start. 17,19 All four patients survived beyond the age of 1 year. 17,18 The short- and mid-term reports clearly show that the enzyme was well-tolerated and that tissue morphology and motor and cardiac function improved. The effect on the heart was most significant, with a reduction of the left ventricular mass index in all infants. The most impressive improvement was observed in the two younger patients,

Table 2. Clinical Trials of Enzyme Replacement Therapy in Late-onset Pompe Disease

Authors	Year	Design	Treated Patients	Study Duration	Outcome Measures	Primary Endpoint	Result
Winkel, et al. ²⁵	2004	Phase II	3	3 years	MB, PF, HHD, MRC GMFM,	Safety/efficacy	3/3 survived improved PF, HHD, MRC
Rossi, et al. ²⁷	2007	Phase II	3	20–140 weeks	CF, PF, MF	Survival/safety	2/3 survived >70–140 weeks 2/3 improved CF, PF, MF
Expanded access	Ongoing	Phase III	18	2–8 years	PF, MF	Ventilator time, MF	18/18 survived 8/17 reduction of VT 14/18 improvement in MF
LOTS	Finished 2007	Phase IIIb	90	18 months	PF, MF	Safety, 6-minute walk, FVC	90/90 survived improved 6-minute walk test improved FVC

CF = cardiac function; FVC = forced vital capacity; GMFM = gross motor function measure; HHD = handheld dynamometer; MB = muscle biopsy; MF = motor function; MRC = medical research council score; NF = neurological function; PF = pulmonary function; VT = ventilator time; LOTS = Late Onset Treatment Study.

who had no significant respiratory problems during the first two years of life.

A long-term, follow-up report of these four infants revealed the survival of all beyond the age of 4 years. The hypertrophic cardiomyopathy diminished significantly during the 84 weeks of ERT. Remarkable progress in motor function was seen in the two youngest infants; they achieved motor milestones that are unmet in untreated infantile GSDII patients. However, one of the two younger patients (2.5 months of age at the start) became ventilator-dependent at the age of 2 years and died suddenly at the age of 4 years, 3 months after a period of intractable fever, unstable blood pressure, and coma. The two older patients in this study (7 and 8 months of age at the start) became ventilator-dependent before or soon after the therapy began, and remained completely ventilator-dependent.¹⁹

In 2001, another phase I/II, open-label, single-dose study enrolled three infants (aged 2.5 to 4 months) with a follow-up period of 1 year, infusing 5 mg/kg rhGAA i.v. twice weekly.²⁰ The rhGAA used in this study was purified from genetically-engineered CHO cells. All patients survived beyond the critical age of 1 year. Improvements in pulmonary function were evident within the first 2 months of ERT. The youngest and least severely affected infant (normal baseline cardiac evaluation, despite virtually absent GAA activity) did well on therapy, showed significant improvement in motor function, and began walking independently at 12 months of age. Two other patients had a steady decrease in heart size and maintained normal cardiac function for more than 1 year. Both had some improvement in muscle function, but subsequently deteriorated and became ventilator-dependent after episodes of viral pneumonia. In both cases, the decline coincided with the rising titers of antibodies against rhGAA. Data for 16 to 18 months of treatment were reported, at which time all three were alive; however, as of July 2006, only the best responder was still alive.21

Two studies from Germany reported the results of the ERT phase II clinical trials enrolling two infants (aged 3.1 and 5.9 months) receiving rhGAA from the milk of transgenic rabbits over a period of 48 weeks (40 mg/kg weekly i.v. infusions). There was an overall improvement in left ventricular mass, cardiac function, skeletal muscle function, and skeletal muscle morphology. Both infants were not ventilator-dependent at the follow-up period of 10 months and reached a stable cardiorespiratory status throughout the course of the study. The level of GAA activity in muscle increased significantly in both, but glycogen reduction was observed in only one patient, who showed significant improvement of motor function over the course of a 10-month follow-up.^{22,23} The current status of these two patients has not been released.

In 2006, a report of the first open-label, multinational, multicenter phase II study with Myozyme was published. This study examined the safety and efficacy of ERT in eight infants (aged 2.7 to 14.6 months, median 4.6 months at ERT start) during a follow-up of 52 weeks.²¹ The patients received 10 mg/kg weekly i.v. for the 52week initial stage, and the surviving patients continued on 10 to 20 mg/kg weekly or biweekly for up to 153 weeks (extension phase). As in all previous studies, the most dramatic effect of ERT was on cardiac muscle. All patients showed improved left ventricular mass index. Muscle biopsies were analyzed at baseline, 12, and 52 weeks on ERT by high-resolution light microscopy, digital histomorphometry, electron microscopy, capillary density, fiber type analysis, and confocal microscopy for satellite cell activation. The extent of glycogen clearance varied widely among patients and correlated well with clinical outcome. Low glycogen levels, mild ultrastructural damage, a high proportion of type I fibers, and young age at baseline were predictors of good histologic response. Six of eight patients were alive after 52 weeks of treatment and five were free of invasive ventilation support. These five patients showed improvement in motor function, and three of them were able to walk independently. Four patients died during the extension phase, bringing the total number of deaths in this study to six. The deaths were attributed to complications of the disease. Median age at death or treatment withdrawal for all patients was 21.7 months, significantly later than would be expected for untreated patients. The two surviving children showed significant reduction in skeletal muscle glycogen level on therapy and were over 3 years of age at the time the study was published.²¹ The current status of these two patients has not been released.

Two company-sponsored, multicenter, multinational, open-label, dose-ranging studies of rhGAA safety and efficacy were initiated between 2003 and 2005. These studies had more strict inclusion criteria. The first trial enrolled 18 infants aged 6 months or younger (mean age of 5.3 months at the start) with cardiomyopathy and GAA activity of less than 1% normal in fibroblasts. All patients were ventilator-free at the start of therapy. Patients received rhGAA i.v. at 20 mg/kg (n = 9) or 40 mg/kg (n = 9) every other week. The higher dosage resulted in a greater increase in GAA activity in skeletal muscle. However, this additional increase in GAA activity did not always correlate with glycogen clearance or with clinical outcome. Furthermore, the patients receiving the higher dose tended to have an increased number of infusion-associated reactions. Glycogen level in skeletal muscle, evaluated at week 52 in 17 of 18 patients, remained stable or decreased in 14 patients. Motor development improved in 13 of 18 patients, as measured by the Alberta Infant Motor Scale (AIMS). After 52 weeks of therapy, all 18 patients were alive. Fifteen patients were free of invasive ventilation, three of whom required some form of noninvasive ventilation.²⁴ In the extension phase of the trial, at 121 weeks, 13 patients had survived, of whom 9 were free of invasive ventilator support (P. Kishnani, personal communication).

The second open-label, multicenter study enrolled 21 patients with cardiomyopathy who were aged 6 months to 3.5 years at the start of therapy. This trial has now ended, and the results will soon be published in a peer-reviewed journal. The information on the interim analysis can be found in the reports provided by the European Medicines Agency's website at http://www.emea.europa.eu/humandocs/PDFs/EPAR/myozyme/H-636-en6.pdf.

This study showed the benefit of Myozyme in a group of infants with advanced disease who were followed-up for an average of 2 years. After 1 year, 16 of 21 patients were alive, 10 of whom had attained new motor milestones. As in previous studies, cardiac response was impressive in most patients. Of note is the fact that no reversal of cardiomyopathy was seen in four severely affected patients. One of these four patients died after one infusion, and the three others died prior to completing 24 weeks of therapy. At baseline, 16 patients were free of invasive ventilatory support, and of these seven remained free of support at the end of the study, at which time six deaths were reported (M. Nicolino et al, *Genetics in Medicine*, in press).

Studies in late-onset patients. Information on the efficacy of ERT in late-onset patients remains limited (Table 2). A 3-year follow-up study has been reported for three late-onset patients (aged 11, 16, and 32 years).²⁵ These patients started therapy with rhGAA from milk of transgenic rabbits, but were later transitioned to CHOderived enzyme (Myozyme). Weekly infusions of 10 mg/kg resulted in only a slight increase in GAA muscle activity; after 12 to 24 weeks of therapy, the dosage was increased to 20 mg/kg weekly. However, even on a higher dosage, the level of GAA activity remained below the normal range and glycogen was only slightly decreased. At baseline, all patients were wheelchair-bound and the two older patients required ventilator support. After 72 weeks of treatment, all patients had stabilized pulmonary function and reported less fatigue. In parallel with these clinical accomplishments, a decrease of the creatine kinase, transaminases, and lactate dehydrogenase (LDH) levels was recorded. The distal muscle groups responded better than the proximal muscles. The best clinical response was observed in the youngest patient, who was least affected at the start of therapy. This patient performed the 10-m walk test in 41 seconds at week 84, and in 3 seconds at week 108. The other two patients remained wheelchair-bound, but they too showed a lower degree of disability and improved quality of life.²⁵ The stabilization of pulmonary and muscle function and improvement in quality of life during the

first 3 years of therapy were maintained throughout the 5-year extension period. The information regarding the extension period was presented by van Capelle et al.²⁶ at the Fifth Symposium on Lysosomal Storage Disorders.

An observational, open-label, single-center, juvenile onset follow-up study of three Pompe patients presenting without cardiomyopathy was reported in 2007. These three patients received the drug, Myozyme, under three different protocols with dosages ranging from 10 to 40 mg/kg every other week. The least-affected patient (aged 3 years, 8 months at the start) showed significant improvement of muscle function and no regression during 70 weeks of follow-up. The second patient (aged 2 years, 8 months at the start) initially showed improved muscle function, motor skills, and motor development, but reached a plateau at around week 114, despite an increase in the drug dose during 140 weeks of follow-up. The third patient (aged 19 years, 9 months at the start) had severely compromised skeletal muscle function at baseline and died suddenly after only 20 weeks of ERT.²⁷

There are two large clinical trials with Myozyme. Eighteen late-onset patients are being treated in an ongoing open-label study under the expanded access protocol. The results of this trial have not yet been published in a peer-reviewed journal. The information on the interim analysis can be found in the reports provided by the European Medicines Agency's website at http://www.emea.europa.eu/humandocs/PDFs/EPAR/myozyme/H-636-en6.pdf.

Additionally, the first randomized, double-blind, place-bo-controlled phase III study, which has enrolled 90 patients over 8 years of age in the United States and Europe, is now being conducted (Late Onset Treatment Study [LOTS]). The efficacy is determined by the 6-minute walk test and pulmonary function as measured by percent predicted forced vital capacity. The results of this trial have not yet been published in a peer-reviewed journal. The information for the interim analysis can be found in the Genzyme press release at http://www.amda-pompe.org/LOTSpressrelease.pdf.

Because Myozyme received marketing approval, a number of GSDII patients are receiving rhGAA outside the context of company-sponsored clinical trials. The progress of some of these patients on ERT has been published, but much of the information remains unavailable.

Side effects of rhGAA treatment

Myozyme was generally well-tolerated. Adverse events on ERT were mostly mild to moderate and were infusion-associated or they occurred during the first 2-hour post-infusion. No ERT-related death occurred. Immunological responses were seen in the majority of the patients who developed anti-rhGAA IgG antibodies within the first 3 months of ERT. A summary of the

adverse effects experienced by patients on ERT may be found in the EMEA Myozyme scientific report of 2006 at http://www.emea.europa.eu/humandocs/PDFs/EPAR/myozyme/H-636-en6.pdf.

Immune response to ERT and CRIM status

Immune response to ERT is seen in the majority of GSD II patients. A subset of patients with no residual GAA protein (cross-reactive immunological material-negative, CRIM-negative) develop a particularly high titre of anti-human acid alpha-glucosidase (hGAA) antibodies on ERT. The development of these antibodies was associated with a poor or short-lived response to ERT. ^{20,21,24} This phenomenon is paralleled in the Pompe mouse model; the formation of anti-hGAA antibodies in immune-competent GAA knockout mice made long-term ERT studies impossible. ²⁸

Although no correlation between the outcome of therapy and development of anti-hGAA antibodies was noted in the first Rotterdam study with rhGAA from transgenic rabbit milk, the best response was seen in a CRIM-positive patient. ¹⁹ In addition to the inactivation of the enzyme, therapy specific antibodies may interfere with the targeting of the enzyme or lead to adverse effects. Although the CRIM-negative patients seemed to be at a disadvantage, the full implications of the anti-hGAA antibodies are not known and remain to be investigated. In addition to the challenge posed by CRIM-negative status, a number of limitations to ERT have come to light.

Limitations of ERT

Pre-clinical and clinical studies demonstrated that ERT reverses cardiac pathology and significantly reduces mortality in infants, but the effects in skeletal muscle are less than anticipated. Skeletal muscle comprises approximately 40% of body mass, and as such presents a significant challenge for ERT. Other factors besides the sheer mass of muscle include the relatively inefficient system of delivery of rhGAA to lysosomes and the resistance of type IIB muscle fibers to therapy, which has been clearly demonstrated in an animal model. A singlestudy of one infantile-onset Pompe patient has shown that type IIA myofibers do respond to therapy.²⁹ More studies in humans are needed to evaluate the response of different fiber types to ERT. For instance, it is not known whether the resistance of type IIB myofibers is a feature of human GSDII. The limited glycogen clearance in skeletal muscle may be true of other tissues, such as motor neurons. Persistent glycogen storage in motor neurons may account for the development of neurological symptoms, such as distal foot drop syndrome, in infants who survive longer because of ERT. In addition to the previously mentioned considerations, the need for lifelong infusions, the high cost of the recombinant enzyme, and extremely high doses of the drug (up to \sim 80-fold higher than those for other lysosomal storage disorders) have stimulated efforts to explore alternative approaches.

EXPERIMENTAL THERAPIES

Gene therapy

Gene therapy for Pompe disease has been explored by several groups. The feasibility of this approach was first shown in the *in vitro* studies using retroviral and adenoviral vectors expressing human GAA. The human gene was highly expressed in cultured fibroblasts, myoblasts, and myotubes derived from patients with the disease. Furthermore, once the enzyme was produced, it was secreted into the medium and taken up by the neighboring cells through MPR-mediated endocytosis, resulting in phenotypic rescue of the nontransduced cells. ^{30–32}

For *in vivo* studies in GAA knockout (GAA-KO) mice, two gene transfer systems have been used: 1) vectors based on adenoviruses (Ad) and 2) adeno-associated viruses (AAV). Ad-based vectors are one of the best characterized gene transfer systems, and they are widely used in basic biology studies. The appeal of the AAV-based therapy lies in the nonpathogenic nature of these viruses and their ability to infect both dividing and nondividing cells. A high degree of tropism to skeletal muscle and little immune response make AAV particularly suitable for therapy of muscle disorders. Furthermore, the transgene is integrated into the host genome providing a stable expression of the therapeutic genes.

Skeletal muscle, a major tissue affected by glycogen accumulation, seemed an obvious site for the vector transduction. However, studies with both Ad and AAV vectors quickly demonstrated the limitations of this approach. Intramuscular injection of an Ad vector encoding human GAA into adult KO mice was effective only at the injection site, but not in other distant muscle groups. Similarly, intramuscular and intramyocardial delivery of a recombinant AAV vector containing mouse or human GAA cDNA did not result in phenotypic cross-correction in distant noninjected muscles. 34,35

In a series of experiments using transgenic GAA-KO mice with tetracycline inducible expression of human GAA in skeletal muscle, it was demonstrated that the skeletal muscle-produced transgenic enzyme, which was turned "on" in adult mice, did not provide any appreciable metabolic cross-correction due to the negligible level of secretion. The secretion of the enzyme leading to a systemic effect after unilateral injection in the gastrocnemius muscle of Ad vector encoding hGAA was observed only in GAA-KO neonates. 38

Unlike skeletal muscle, liver was shown to be an excellent target tissue for the vector transduction. High levels of GAA expression in transduced hepatocytes, achieved by intravenous rather than intramuscular administration of the viral vectors, resulted in efficient

production, secretion, and uptake of the enzyme by skeletal muscle. Reduction of the accumulated glycogen in both cardiac and skeletal muscle was observed within days after a single intravenous administration of Ad vector encoding hGAA into the GAA-KO mice.³⁹ This report was the first to demonstrate that liver can serve as a "factory" for the production and secretion of the GAA for metabolic cross-correction of skeletal muscle. Transgenic studies with inducible expression of human GAA in the liver of the GAA-KO mice confirmed that indeed liver is a far better site for the secretion of the enzyme compared to skeletal muscle. 36,37 Even in GAA-KO mice with long-established disease, significant glycogen reduction (84% in heart, 73% in diaphragm, and 46% in quads) was achieved after a single intravenous injection of Ad-GAA vector.40

However, the long-term efficacy of liver targeting of the Ad vector expressing hGAA was hampered by the onset of anti-hGAA antibodies within days of vector injection. The development of neutralizing anti-GAA antibodies correlated with the disappearance of secreted hGAA and gradual accumulation of glycogen in the months after vector administration. Huch improved efficacy was achieved in immune-deficient GAA-KO/SCID mice (severe combined immunodeficient GAA double knockout). The secreted hGAA persisted at high levels in plasma for months after intravenous vector injection resulting in improvement of muscle strength and function and reduction, although not complete elimination, of glycogen. 42

The development of therapy-specific antibodies was also an issue when recombinant AAV vectors were used. 43-46 Humoral immune response to the vector-derived GAA in immune-competent mice prevented any restoration of GAA activity in the affected muscles, despite extremely high super-physiologic levels of GAA expression in liver. 43 In contrast, immune-tolerant mice showed significantly increased GAA levels in the heart and skeletal muscles; neonatal administration of the recombinant human GAA was used to induce tolerance to the vector-derived hGAA. The increased levels of GAA activity correlated with reduced glycogen in the heart and diaphragm and improvement of the contractile function of the soleus muscle. Similarly, intravenous administration of AAV-GAA into GAA-KO/SCID mice resulted in a high level of hGAA in plasma and a correction of glycogen in the heart and diaphragm in males, although females only had correction in the heart.⁴⁵

To improve the efficacy of the viral vectors and to minimize the immune response, several approaches have been used, such as modification of the GAA cDNA sequence, different promoters, and different AAV serotypes. Traditional AAV vectors using AAV2 terminal repeat sequences can be efficiently packaged as other serotypes (dozens of serotypes have been isolated).

A replacement of the signal peptide in the human GAA cDNA contained in an AAV vector by human alpha anti-trypsin signal peptide resulted in a higher GAA secretion with a lower number of viral particles.⁴⁷

Use of a fully deleted adenovirus-based vector in which hGAA expression was driven by a nonviral phosphoenol-pyruvate carboxykinase ApoE promoter/enhancer resulted in a high hGAA expression level, glycogen reduction, and improved muscle strength in immune-tolerant mice. 48

Intravenous administration of newer serotypes of AAV, such as AAV8 expressing hGAA under the control of liver-specific promoter resulted in evasion of immune response to the produced GAA in immune-competent GAA-KO. ⁴⁹ Furthermore, the liver-specific promoter was significantly more efficient compared with a hybrid universal promoter in driving the expression of the hGAA in liver, resulting in normalization of GAA activity and glycogen reduction in cardiac and skeletal muscle (83% decrease in gastrocnemius, 75% in quadriceps). Improved abilities of infection and expression of hGAA from cardiac tissues *in vivo* was shown for AAV9 serotype. ⁵⁰

A single intravenous administration of a rAAV serotype 1 to neonates resulted in supra-physiologic level of GAA activity in the heart (>64 times normal) and greater than 20% in other tissues. Partial reduction of glycogen was observed in soleus muscle, which showed functional correction, despite a relatively low (16% normal) level of enzyme activity.⁵¹ Improved cardiac conductance and a reduction in left ventricular mass, as well as significantly improved diaphragm contractility and ventilatory function, was observed in these mice after 1-year post-treatment.⁵²

Finally, AAV-based treatment at a very low number of vector particles was used in combination with ERT to induce tolerance to the recombinant hGAA. A subtherapeutic dose of the AAV vector containing hGAA and the liver-specific promoter injected before initiation of ERT prevented the development of the therapy-specific antibodies in the GAA-KO, resulting in an enhancement of ERT response. ⁵³ Under these conditions, ERT increased GAA activity and reduced glycogen in the heart and to a lesser extent in the diaphragm; however, the quadriceps were not biochemically corrected. This immunomodulatory role of gene therapy may be particularly valuable for treatment of CRIM-negative infantile Pompe patients.

Both Ad and AAV-based gene therapy have advantages and disadvantages; however, this discussion goes beyond the limits of this review. The reader is referred to recent reviews on the topic. 54-56

Although a gene therapy clinical trial is not in the near future, the findings from these experiments have greatly contributed to our understanding of the complexities in treating skeletal muscle.

Remarkably, even the extremely high persistent levels of enzyme activity in plasma achieved with the most efficient systems of gene therapy (i.e., levels which are unrealistic to obtain with ERT) did not lead to a full reversal of pathology in skeletal muscle. Furthermore, the GAA activity in skeletal muscle in many of the gene therapy experiments was near or exceeded normal levels and still failed to rescue muscle pathology. This goes against the prevailing idea that a small increase in residual GAA activity is sufficient to reverse the glycogen accumulation. It is also important to emphasize that the degree of glycogen accumulation in skeletal muscle in severely affected patients is significantly higher than that found in GAA-KO mice.⁵⁷

Enzyme enhancement therapy or chemical chaperone therapy

EET therapy is based on the ability of pharmacological chaperones or active site inhibitors to rescue misfolded or unstable proteins from endoplasmic reticulum (ER)—associated degradation by increasing the amount of protein that passes the quality control system of the cell. Various inhibitors and derivatives of deoxynojirimycin (DNJ) have been tested in other lysosomal storage diseases. ⁵⁸ A number of missense mutations found in lateonset Pompe patients result in retention and premature degradation of the GAA precursor in the ER. These mutations may be amenable to chaperone-mediated therapy.

The effects of two imino sugars (DNJ and its derivative), N-(n-butyl)deoxynojirimycin (NB-DNJ), were investigated in fibroblasts derived from Pompe patients. A significant increase of GAA activity and the amount of the mature form of GAA were observed in fibroblasts from patients carrying L552P and G549R mutations, but not in those carrying several other mutations (A445P, L355P, R375L).⁵⁹

In another study, four mutations were chosen for analysis: 1) Y455F/Y455F, 2) P545L/P545L, 3) 525del/R600C, and 4) D645E/R854X. Of these four genotypes, two fibroblast cell lines (Y455F/Y455F and P545L/P545L) showed a significant increase of GAA activity when treated with DNJ. These two cell lines were also responsive to NB-DNJ, although the effect of NB-DNJ on Y455F/Y455F subsided quickly after removal of the compound. Brefeldin A, which inhibits protein transport from ER/Golgi to the lysosomes, blocked the corrective effect of NB-DNJ, indicating that this compound indeed facilitated the transport of the mutant enzyme species from ER to lysosomes.⁶⁰

The molecular interaction between imino sugars and Myozyme has been recently investigated. In addition, three-dimensional structural models of the catalytic domain of the enzyme with the imino sugars bound to its active site were constructed. Consistent with biochemical data, DNJ seemed to fit into the active site better than other imino sugars (NM-DNJ, NB-DNJ, and NE-DNJ)

and had the strongest inhibitory effect on the enzyme.⁶¹ The authors emphasize that the development of new derivatives that bind to mutant α -glucosidases and transport them to lysosomes but do not inhibit the enzyme are required.

Another inhibitor of GAA, D-glucose, which is actually the product of lysosomal glycogen hydrolysis, has been shown to stabilize the enzyme activity and to increase the production of GAA protein in CHO-K1 expressing cells by preventing the GAA aggregation. Furthermore, D-glucose increased the residual enzyme activity in fibroblast cell lines from late-onset GSDII patients. However, in these cases the genetic defect was not identified.⁶²

Thus, EET therapy may be a promising approach, but its efficacy depends on some residual enzyme activity and may be limited to certain mutations in the GAA gene.

Enhanced delivery of the therapeutic enzyme

Carbohydrate analysis of the rhGAA indicated that the currently available preparations contain a relatively low number of M6P residues, an important recognition marker for the CI-MPR. In an attempt to improve the delivery of the therapeutic enzyme and to facilitate a reduction in the dosage of the drug, a second generation of the rhGAA (neo-rhGAA) with a higher affinity for the CI-MPR was made.⁶³ This process involves a chemical conjugation to rhGAA of an oligosaccharide ligand bearing M6P residues in the optimal configuration. The resulting modified enzyme had significantly increased affinity for CI-MPR, and it internalized much more efficiently in myoblasts derived from GAA-KO mice. Furthermore, these studies showed greater clearance of glycogen from all affected muscles compared with the currently available drug. It is important to note that a comparable reduction in glycogen levels was realized using an approximately 8-fold lower dose of the neorhGAA in the heart and diaphragm, and 4-fold lower dose in skeletal muscle.

Similar thinking motivated experiments using hyaluronidase in GAA-KO mice to facilitate the delivery of rhGAA to skeletal muscle. Hyaluronidase is known to increase tissue permeability and is currently in clinical use for other disorders. Intraperitoneal injection of hyaluronidase prior to ERT increased GAA activity in heart, diaphragm, kidney, and quadriceps.⁶⁴

Nutrition and exercise therapy in late onset patients

Nutrition and exercise therapy is a combination of a high-protein, low-carbohydrate diet and daily conditioning aerobic exercise. This therapy is aimed at minimizing glycogen accumulation, increasing muscle protein synthesis, and increasing the ratio of type I to type II muscle fibers. Late-onset patients who complied fully with nutrition and exercise therapy showed much improved

prognosis and a significantly slower rate of muscle deterioration. $^{65-67}$

CONCLUSION

ERT has been a major advance in the treatment of Pompe disease. The therapy results in a remarkable reversal of pathology in cardiac muscle in infantile patients, who would otherwise die from cardiac failure. Thus, ERT has changed the natural course of the disease. The greatest success with ERT has been seen when therapy is started early before irreversible changes occur. However, unfortunately the success seen in cardiac muscle does not fully extend to skeletal muscle, which remains a significant challenge. One reason for the limited success with ERT may be our incomplete understanding of the pathology and the pathogenesis of Pompe disease in skeletal muscle. Recent studies on the potential role of autophagy in GSDII suggest that pathology extends beyond the lysosome. The development of improved therapies would require not only the expansion of our understanding of the basic pathological mechanism but also a better exchange of information and cooperation between industry, physicians, and scientists.

Disclosure

Benedikt Schoser has received lecture fees from Genzyme Cooperation.

Acknowledgments: Benedikt Schoser is member of the German network on muscular dystrophies (MD-NET, 01GM0601) funded by the German ministry of education and research (Bundes Ministerium für Bildung und Forschung [German Ministry of Education and Research], Bonn, Germany).

REFERENCES

- Martiniuk F, Chen A, Mack A, et al. Carrier frequency for glycogen storage disease type II in New York and estimates of affected individuals born with the disease. Am J Med Genet 1998;79: 69–72.
- Engel AG, Hirschhorn R, Huie ML. Acid maltase deficiency. In: Engel AG, Franzini-Armstrong C, eds. Myology. New York: McGraw-Hill, 2003:1559–1586.
- Winkel LP, Hagemans ML, Van Doorn PA, et al. The natural course of non-classic Pompe's disease; a review of 225 published cases. J Neurol 2005;252:875–884.
- Kishnani PS, Hwu WL, Mandel H, Nicolino M, Yong F, Corzo D. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr 2006;148:671– 676.
- Griffin JL. Infantile acid maltase deficiency. III. Ultrastructure of metachromatic material and glycogen in muscle fibers. Virchows Arch B Cell Pathol Incl Mol Pathol 1984;45:51–61.
- Thurberg BL, Lynch MC, Vaccaro C, et al. Characterization of pre- and post-treatment pathology after enzyme replacement therapy for pompe disease. Lab Invest 2006;86:1208–1220.
- Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008;451: 1069–1075.
- Fukuda T, Ahearn M, Roberts A, et al. Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in pompe disease. Mol Ther 2006;14:831–839.

- Raben N, Takikita S, Pittis MG, et al. Deconstructing Pompe disease by analyzing single muscle fibers. Autophagy 2007;3:546– 552
- Schoser BG, Muller-Hocker J, Horvath R, et al. Adult-onset glycogen storage disease type 2: clinico-pathological phenotype revisited. Neuropathol Appl Neurobiol 2007;33:544–559.
- Muller-Felber W, Horvath R, Gempel K, et al. Late onset Pompe disease: clinical and neurophysiological spectrum of 38 patients including long-term follow-up in 18 patients. Neuromuscul Disord 2007;17:698–706.
- Kornfeld S. Structure and function of the mannose 6-phosphate/ insulinlike growth factor II receptors. Annu Rev Biochem 1992; 61:307–330.
- Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 2003;4:202–212.
- Neufeld EF, Fratantoni JC. Inborn errors of mucopolysaccharide metabolism. Science 1970;169:141–146.
- Wisselaar HA, Kroos MA, Hermans MM, van Beeumen J, Reuser AJ. Structural and functional changes of lysosomal acid alphaglucosidase during intracellular transport and maturation. J Biol Chem 1993;268:2223–2231.
- Moreland RJ, Jin X, Zhang XK, Decker RW, Albee KL, Lee KL, et al. Lysosomal acid alpha-glucosidase consists of four different peptides processed from a single chain precursor. J Biol Chem 2005;280:6780-6791.
- Van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A, Van der Ploeg AT. Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 2000;356:397– 398.
- Van den Hout JM, Reuser AJ, de Klerk JB, Arts WF, Smeitink JA, Van der Ploeg AT. Enzyme therapy for pompe disease with recombinant human alpha-glucosidase from rabbit milk. J Inherit Metab Dis 2001;24:266–274.
- Van den Hout JM, Kamphoven JH, Winkel LP, et al. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 2004;113:e448-e457.
- Amalfitano A, Bengur AR, Morse RP, et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 2001;3:132–138.
- Kishnani PS, Nicolino M, Voit T, et al. Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease. J Pediatr 2006;149:89–97.
- 22. Klinge L, Straub V, Neudorf U, Voit T. Enzyme replacement therapy in classical infantile pompe disease: results of a ten-month follow-up study. Neuropediatrics 2005;36:6–11.
- Klinge L, Straub V, Neudorf U, et al. Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul Disord 2005;15:24–31.
- Kishnani PS, Corzo D, Nicolino M, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology 2007;68:99–109.
- Winkel LP, Van den Hout JM, Kamphoven JH, et al. Enzyme replacement therapy in late-onset Pompe's disease: a three-year follow-up. Ann Neurol 2004;55:495–502.
- 26. van Capelle CI, Winkel LPF, Hagemans MLC, et al. Paper presented at: Fifth Symposium on Lysosomal Storage Disorders; April 10–12, 2008; Paris, France.
- Rossi M, Parenti G, Della CR, Romano A, et al. Long-term enzyme replacement therapy for Pompe disease with recombinant human alpha-glucosidase derived from Chinese hamster ovary cells. J Child Neurol 2007;22:565–573.
- Raben N, Nagaraju K, Lee A, et al. Induction of tolerance to a recombinant human enzyme, acid alpha-glucosidase, in enzyme deficient knockout mice. Transgenic Res 2003;12(2):171–178.
- Drost MR, Schaart G, van Dijk P, et al. Both type 1 and type 2a muscle fibers can respond to enzyme therapy in Pompe disease. Muscle Nerve 2008;37:251–255.
- Zaretsky JZ, Candotti F, Boerkoel C, et al. Retroviral transfer of acid alpha-glucosidase cDNA to enzyme-deficient myoblasts re-

- sults in phenotypic spread of the genotypic correction by both secretion and fusion. Hum Gene Ther 1997;8:1555–1563.
- 31. Nicolino MP, Puech JP, Kremer EJ, et al. Adenovirus-mediated transfer of the acid alpha-glucosidase gene into fibroblasts, myoblasts and myotubes from patients with glycogen storage disease type II leads to high level expression of enzyme and corrects glycogen accumulation. Hum Mol Genet 1998;7:1695–1702.
- 32. Pauly DF, Fraites TJ, Toma C, et al. Intercellular transfer of the virally derived precursor form of acid alpha-glucosidase corrects the enzyme deficiency in inherited cardioskeletal myopathy Pompe disease. Hum Gene Ther 2001;12:527–538.
- 33. Ding E, Hu H, Hodges BL, et al. Efficacy of gene therapy for a prototypical lysosomal storage disease (GSD-II) is critically dependent on vector dose, transgene promoter, and the tissues targeted for vector transduction. Mol Ther 2002;5:436–446.
- 34. Fraites TJ Jr., Schleissing MR, Shanely RA, et al. Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Mol Ther 2002;5(5 Pt 1): 571–578.
- Sun B, Zhang H, Franco LM, et al. Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol Ther 2005;11:889–898.
- Raben N, Lu N, Nagaraju K, et al. Conditional tissue-specific expression of the acid alpha-glucosidase (GAA) gene in the GAA knockout mice: implications for therapy. Hum Mol Genet 2001; 10:2039–2047.
- Raben N, Jatkar T, Lee A, et al. Glycogen stored in skeletal but not in cardiac muscle in acid alpha-glucosidase mutant (Pompe) mice is highly resistant to transgene-encoded human enzyme. Mol Ther 2002;6:601–608.
- 38. Martin-Touaux E, Puech JP, Chateau D, et al. Muscle as a putative producer of acid alpha-glucosidase for glycogenosis type II gene therapy. Hum Mol Genet 2002;11:1637–1645.
- Amalfitano A, McVie-Wylie AJ, Hu H, et al. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-alpha-glucosidase. Proc Natl Acad Sci U S A 1999;96:8861– 8866
- 40. Xu F, Ding E, Migone F, et al. Glycogen storage in multiple muscles of old GSD-II mice can be rapidly cleared after a single intravenous injection with a modified adenoviral vector expressing hGAA. J Gene Med 2005;7:171–178.
- Ding EY, Hodges BL, Hu H, et al. Long-term efficacy after [E1-, polymerase-] adenovirus-mediated transfer of human acid-alphaglucosidase gene into glycogen storage disease type ii knockout mice. Hum Gene Ther 2001;12:955–965.
- Xu F, Ding E, Liao SX, et al. Improved efficacy of gene therapy approaches for Pompe disease using a new, immune-deficient GSD-II mouse model. Gene Ther 2004;11:1590–1598.
- 43. Cresawn KO, Fraites TJ, Wasserfall C, et al. Impact of humoral immune response on distribution and efficacy of recombinant adeno-associated virus-derived acid alpha-glucosidase in a model of glycogen storage disease type II. Hum Gene Ther 2005;16:68–80.
- 44. Sun B, Chen YT, Bird A, et al. Packaging of an AAV vector encoding human acid alpha-glucosidase for gene therapy in glycogen storage disease type II with a modified hybrid adenovirus-AAV vector. Mol Ther 2003;7:467–477.
- Sun B, Zhang H, Franco LM, et al. Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol Ther 2005;11:57–65.
- Sun B, Chen YT, Bird A, Amalfitano A, Koeberl DD. Long-term correction of glycogen storage disease type II with a hybrid Ad-AAV vector. Mol Ther 2003;7:193–201.
- Sun B, Zhang H, Benjamin DK Jr., et al. Enhanced efficacy of an AAV vector encoding chimeric, highly secreted acid alpha-glucosidase in glycogen storage disease type II. Mol Ther 2006;14:822– 830
- 48. Kiang A, Hartman ZC, Liao S, et al. Fully deleted adenovirus

- persistently expressing GAA accomplishes long-term skeletal muscle glycogen correction in tolerant and nontolerant GSD-II mice. Mol Ther 2006;13:127–134.
- Franco LM, Sun B, Yang X, et al. Evasion of immune responses to introduced human acid alpha-glucosidase by liver-restricted expression in glycogen storage disease type II. Mol Ther 2005;12: 876–884.
- Pacak CA, Mah CS, Thattaliyath BD, et al. Recombinant adenoassociated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006;99:e3–e9.
- Mah C, Cresawn KO, Fraites TJ Jr., et al. Sustained correction of glycogen storage disease type II using adeno-associated virus serotype 1 vectors. Gene Ther 2005;12:1405–1409.
- Mah C, Pacak CA, Cresawn KO, et al. Physiological correction of Pompe disease by systemic delivery of adeno-associated virus serotype 1 vectors. Mol Ther 2007;15:501–507.
- Sun B, Bird A, Young SP, Kishnani PS, Chen YT, Koeberl DD. Enhanced response to enzyme replacement therapy in Pompe disease after the induction of immune tolerance. Am J Hum Genet 2007;81:1042–1049.
- Ellinwood NM, Vite CH, Haskins ME. Gene therapy for lysosomal storage diseases: the lessons and promise of animal models. J Gene Med 2004;6:481–506.
- Koeberl DD, Kishnani PS, Chen YT. Glycogen storage disease types I and II: treatment updates. J Inherit Metab Dis 2007;30: 159–164.
- Kiang A, Amalfitano A. Progress and problems when considering gene therapy for GSD-II. Acta Myol 2007;26:49–52.
- Hawes ML, Kennedy W, O'Callaghan MW, Thurberg BL. Differential muscular glycogen clearance after enzyme replacement therapy in a mouse model of Pompe disease. Mol Genet Metab 2007; 91:343–351.
- 58. Beck M. New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy. Hum Genet 2007;121:1–22.
- Parenti G, Zuppaldi A, Gabriela PM, et al. Pharmacological enhancement of mutated alpha-glucosidase activity in fibroblasts from patients with Pompe disease. Mol Ther 2007;15:508–514.
- Okumiya T, Kroos MA, Vliet LV, Takeuchi H, Van der Ploeg AT, Reuser AJ. Chemical chaperones improve transport and enhance stability of mutant alpha-glucosidases in glycogen storage disease type II. Mol Genet Metab 2007;90:49–57.
- 61. Yoshimizu M, Tajima Y, Matsuzawa F, et al. Binding parameters and thermodynamics of the interaction of imino sugars with a recombinant human acid alpha-glucosidase (alglucosidase alfa): insight into the complex formation mechanism. Clin Chim Acta 2008;391:68–73.
- Kakavanos R, Hopwood JJ, Lang D, Meikle PJ, Brooks DA. Stabilising normal and mis-sense variant alpha-glucosidase. FEBS Lett 2006;580:4365–4370.
- 63. Zhu Y, Li X, McVie-Wylie A, et al. Carbohydrate-remodeled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem J 2005;389:619–628.
- 64. Matalon R, Surendran S, Campbell GA, et al. Hyaluronidase increases the biodistribution of acid alpha-1,4 glucosidase in the muscle of Pompe disease mice: an approach to enhance the efficacy of enzyme replacement therapy. Biochem Biophys Res Commun 2006;350:783–787.
- Slonim AE, Coleman RA, McElligot MA, et al. Improvement of muscle function in acid maltase deficiency by high-protein therapy. Neurology 1983;33:34–38.
- 66. Slonim AE, Bulone L, Goldberg T, et al. Modification of the natural history of adult-onset acid maltase deficiency by nutrition and exercise therapy. Muscle Nerve 2007;35:70–77.
- 67. Slonim AE, Bulone L, Minikes J, et al. Benign course of glycogen storage disease type IIb in two brothers: nature or nurture? Muscle Nerve 2006;33:571–574.